Predictive Data Mining: A Generalized Approach

نویسنده

  • Meghana Deshmukh
چکیده

Abstract— In this paper, we included the ambitious task of formulating a general framework of data mining. We explained that the framework should fulfil. It should elegantly handle different types of data, different data mining tasks, and different types of patterns/models. We also discuss data mining languages and what they should support: this includes the design and implementation of data mining algorithms, as well as their composition into nontrivial multi step knowledge discovery scenarios relevant for practical application. We proceed by laying out some basic concepts, starting with (structured) data and generalizations (e.g., patterns and models) and continuing with data mining tasks and basic components of data mining algorithms (i.e., refinement operators, distances, features and kernels). We next discuss how to use these concepts to formulate constraint-based data mining tasks and design generic data mining algorithms. Finally this paper discussed about these components would fit in the overall framework and in particular into a language for data mining and knowledge discovery.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Combined Descriptive and Predictive Methods of Data Mining for Coronary Artery Disease Prediction: a Case Study Approach

Heart disease is one of the major causes of morbidity in the world. Currently, large proportions of healthcare data are not processed properly, thus, failing to be effectively used for decision making purposes. The risk of heart disease may be predicted via investigation of heart disease risk factors coupled with data mining knowledge. This paper presents a model developed using combined descri...

متن کامل

An Efficient Predictive Model for Probability of Genetic Diseases Transmission Using a Combined Model

In this article, a new combined approach of a decision tree and clustering is presented to predict the transmission of genetic diseases. In this article, the performance of these algorithms is compared for more accurate prediction of disease transmission under the same condition and based on a series of measures like the positive predictive value, negative predictive value, accuracy, sensitivit...

متن کامل

Generalized Stochastic Tree Automata for Multi-relational Data Mining

This paper addresses the problem of learning a statistical distribution of data in a relational database. Data we want to focus on are represented with trees which are a quite natural way to represent structured information. These trees are used afterwards to infer a stochastic tree automaton, using a well-known grammatical inference algorithm. We propose two extensions of this algorithm: use o...

متن کامل

Incremental Predictive Command of Velocity to Be Gained Guidance Method

In this paper, a new incremental predictive guidance method based on implicit form of velocity to be gained algorithm is proposed. In this approach, the generalized incremental predictive control (GIPC) approach is applied to the linearized model for compensating the guidance error. Instead of using the present state in popular model based predictive controller (MPC), in the new method both pre...

متن کامل

Using a combination of genetic algorithm and particle swarm optimization algorithm for GEMTIP modeling of spectral-induced polarization data

The generalized effective-medium theory of induced polarization (GEMTIP) is a newly developed relaxation model that incorporates the petro-physical and structural characteristics of polarizable rocks in the grain/porous scale to model their complex resistivity/conductivity spectra. The inversion of the GEMTIP relaxation model parameter from spectral-induced polarization data is a challenging is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014